Surface mediated chiral interactions between cyclodextrins and propranolol enantiomers: a SERS and DFT study.

نویسندگان

  • Rares Stiufiuc
  • Cristian Iacovita
  • Gabriela Stiufiuc
  • Ede Bodoki
  • Vasile Chis
  • Constantin M Lucaciu
چکیده

The nanoparticles mediated enantioselective recognition of propranolol enantiomers through native cyclodextrin complexation has been investigated by using surface-enhanced Raman spectroscopy (SERS). The highly efficient chiral recognition mechanism is based on a synergistic interaction between spherical noble metal nanoparticles, propranolol enantiomers and native cyclodextrins (CDs). Amongst the native cyclodextrins, β-CD has the highest chiral recognition ability for propranolol enantiomers, due to its specific shape and cavity size, thus producing the largest difference between the recorded SERS spectra of the two hosted enantiomers. The molecular interaction mechanism responsible for enantioselectivity was furthermore proven by quantum chemical calculations based on density functional theory (DFT). The theoretical calculations and experimental SER spectra allowed the assignment of functional moieties involved in the chiral recognition mechanism. The most important factors governing the highly efficient chiral probing by SERS are the fundamentally different mechanism of interaction between the R- and S-enantiomers and β-CD and the strength of interaction between the nanoparticle surface and the two propranolol-CD complexes. The role of metallic nanoparticles in the enantioselective recognition process has been experimentally evaluated by using silver and gold nanoparticles as SERS substrates, given their ability to interact differently with the complexes. The viability of this new method for chiral discrimination has been demonstrated for both substrates and could open new avenues for these kinds of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a new method based on chiral ligand-exchange chromatography for the enantioseparation of propranolol

A new chromatographic procedure was proposed for the separation of propranolol (PRN) enantiomers based upon enantioselective chiral ligand-exchange chromatography. The separation was carried out on a short C8 column leading to considerably short separation time. L-alanine and Cu2+ were applied as chiral selector and central bivalent complexing ion, respectively. It was found that the kind of co...

متن کامل

Separation of ibuprofen drugs enantiomers by using chiral carbon nanotube with molecular dynamics simulation

Background: The separation of drug enantiomers in the pharmaceutical industry is of great importance since most organic compounds are chiral. The main purpose of this study was to calculate the binding energy of ibuprofen isomers interacting with the CNT, according to various adsorption configurations. Moreover, we have evaluated the performance of (16.4) chiral carbon nanotube for separation o...

متن کامل

Development of a new method based on chiral ligand-exchange chromatography for the enantioseparation of propranolol

A new chromatographic procedure was proposed for the separation of propranolol (PRN) enantiomers based upon enantioselective chiral ligand-exchange chromatography. The separation was carried out on a short C8 column leading to considerably short separation time. L-alanine and Cu2+ were applied as chiral selector and central bivalent complexing ion, respectively. It was found that the kind of co...

متن کامل

Electrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode

The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were us...

متن کامل

Application of Guanidine Hcl to Improve Enantioseparation of a Model Basic Drug, Cetirizine, By Capillary Electrophoresis Using Sulfated Β-Cyclodextrin

A common approach in resolving enantiomers of chiral basic drugs by capillary electrophoresis (CE) is to use cyclodextrins (especially their anionic derivatives) as chiral selector in the acidic buffer (pH ≤ 3) in normal or reversed (carrier) mode. Then, some organic modifiers are added to the buffer solution if the resolution is not satisfactory. In case of cetirizine (CTN), applying the same ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2015